CROWN AND AZACROWN ETHERS WITH PENDANT ADENINE GROUP*

Petr Holý, Martin Bělohradský, Ivan Stibor, Juraj Koudelka, David Šaman, Jana Hodačová, Antonín Holý and Jiří Závada

Institute of Organic Chemistry and Biochemistry, Czechoslovak Academy of Sciences, 166 10 Prague 6

Received April 25th, 1987

Base-catalyzed oxirane ring-opening reaction of 4,5-epoxy-2-oxapentyl crown ethers Ia-Ieand N-(2,3-epoxy-1-propyl) azacrown ethers IIa-IIc with adenine affords mixtures of corresponding adenin-9-yl, adenin-3-yl and adenin-7-yl derivatives (IIIa-IIIe, IVa-IVe, Va-Ve, VIa-VIc, VIIa-VIIc and VIIIa-VIIIc) respectively, separable by liquid chromatography. Structure of the individual isomers was assigned on basis of ¹H and ¹³C NMR spectroscopy. Complexation of the prevailing (adenin-9-yl) isomers IIIa-IIIe and VIa-VIc with sodium ion was measured potentiometrically in 99% methanol and the calculated stability constants were compared with corresponding data from related homologous series of crown and azacrown ethers IXa-IXe, Xa-Xe, XIa-XIc and XIIa-XIIc differing in pendant group.

In the preceding paper¹ we have shown that reaction of 4,5-epoxy-2-oxapentyl crown ethers Ia-Ie and N-(2,3-epoxy-1-propyl) azacrown ethers IIa-IIc with amines provides access to a variety of macrocyclic multisite ligands with β -hydroxyamine pendant groups. As a complement to the synthetic study we have now examined reaction of the epoxy-compounds Ia-Ie and IIa-IIc with adenine. Adenine is an

ambident nitrogen nucleophile and the course of oxirane ring opening in Ia-Ieand IIa-IIc represents a problem of some interest on its own right. Furthermore, adenine may afford additional ligation site for a selective complexation of metal ions. Last but not least, possible biological activity of adenine-crown ether conjugates arose our interest. Potent antiviral activity has been recently discovered in several acyclic²⁻⁴ and carbocyclic^{5,6} adenosine analogues bearing some structural

[•] Part VIII in the series Chemistry of Multidentate Ligands; Part VII: Collect. Czech. Chem. Commun. 52, 2961 (1987).

semblance with products of the present reaction. There is also an increased interest in adenine derivatives as potential modulators⁷ of adenine receptors in cellular membranes.

AHPA esters (ref.3)

EXPERIMENTAL

Analytical samples were dried in a rotating film at 60° C/1 Pa for 60 h. ¹H and ¹³C NMR spectra were measured in FT mode on Varian XL-200 (at 200 MHz for ¹H) in hexadeuteriodimethyl sulphoxide (Aldrich Chemical; $99\cdot9\%^{2}$ H) and the spectra were referred to central peak of solvent signal (2.5 ppm in ¹H and 39.7 ppm in ¹³C NMR spectra). Mass spectra were measured on AEI MS 902 spectrometer with a double focusation. Potentiometric measurements were

carried out on Radelkis digital OP-208/1 pH-meter with Crytur sodium ion selective electrode (Monokrystaly, Turnov) and Ag/AgCl/LiCl as the reference. Thin layer chromatography (TLC) was performed on Kieselgel GF₂₅₄ Merck (eluent CHCl₃-CH₃OH-aq. NH₄OH) or on alumina Woelm TLC (eluent CHCl₃-CH₃OH) using UV absorption and Draggendorff's reagent⁸ for detection. Preparative liquid chromatography was carried out on alumina (Reanal neutral, Brockmann activity II) employing CHCl₃-CH₃OH (99:1-95:5) as eluent. HPLC analyses were carried out using Knauer modular instrument with UV detector at 267 nm (Lichrosorb RP 18 - 7 µm; 100 × 4 mm column with a precolumn; CH₃OH-H₂O-(C₂H₅)₃N eluent, 25:100:0.1-50:100:0.1 gradient).

Reaction of Epoxides Ia-Ie and IIa-IIc with Adenine

A mixture of adenine (270 mg; 2 mmol), an appropriate epoxide (2.2 mmol), and anhydrous potassium carbonate (2.8 mg; 0.02 mmol) in dimethylformamide (15 ml) was heated under stirring at 70-80°C until adenine disappeared (20-40 h; TLC monitoring). The solvent was distilled off *in vacuo* and the residue was subjected to a column chromatography. Yields and elemental analyses of the main products (adenin-9-yl isomers) are in Table I. The ¹H, ¹³C NMR, and mass spectra are summarized in Tables II-V.

TABLE I

	Adenin-9-yl	derivatives	III and	VI: yields	and	elemental	analyses
--	-------------	-------------	---------	------------	-----	-----------	----------

Come	Yield ^a	Formula	Ca	lculated/for	ind	
Compot	ind %	(mol. weight)	% C	% Н	% N	
IIIa	70	C ₁₇ H ₂₇ N ₅ O ₆ (397·4)	51·37 51·04	6·85 6·80	17·62 17·08	
IIIb	52	C ₁₉ H ₃₁ N ₅ O ₇ (441·5)	51·69 51·34	7∙08 7∙07	15·87 15·57	
IIIc	61	C ₂₁ H ₃₅ N ₅ O ₈ (485·5)	51·95 51·74	7·27 7·31	14·43 14·12	
IIId	51	C ₂₃ H ₃₉ N ₅ O ₉ (529·6)	52·16 52·13	7·42 7·35	13·23 12·98	
IIIe	45	C ₂₅ H ₄₃ N ₅ O ₁₀ (573·6)	52·34 52·47	7∙55 7∙47	12·21 11·80	
VIa	72	C ₁₆ H ₂₆ N ₆ O ₄ (366·4)	52·44 52·06	7·15 7·09	22·94 22·58	
VIb	54	C ₁₈ H ₃₀ N ₆ O ₅ (410·5)	52∙67 52∙43	7·37 7·43	20·48 19·83	
VIc	58	C ₂₀ H ₃₄ N ₆ O ₆ (454·5)	52·85 52·61	7·54 7·46	18·49 18·47	

^a From column chromatography.

Adenine deri	vatives III – VIII: mass spectra
Compound ^a	<i>m/z</i> (r.i.)
IIIa	$M^+ = 397$ (5), 178 (100), 193 (83), 178 (58), 45 (53), 149 (44), 87 (44), 148 (36), 136 (36), 135 (36), 218 (25)
IIIb	$M^+ = 441$ (5), 178 (100), 193 (50), 87 (48), 45 (48), 149 (38), 136 (29), 208 (26), 148 (26), 135 (23), 252 (17)
IIIc	$M^+ = 485$ (4), 178 (100), 45 (58), 193 (46), 192 (42), 149 (38), 136 (38), 87 (33), 148 (31), 208 (27), 135 (27)
IIId	$M^+ = 529$ (4), 178 (100), 193 (46), 45 (43), 87 (39), 192 (38), 149 (33), 136 (30), 208 (27), 179 (25), 176 (25)
IIIe	45 (100), 135 (54), 59 (54), 57 (54), 178 (49), 87 (48), 136 (46), 148 (45), 73 (45), 191 (31)
IVa	$M^+ = 397$ (1), 45 (100), 87 (70), 178 (55), 105 (48), 175 (44), 149 (37), 136 (30), 208 (28), 135 (28), 193 (15)
IVb .	$M^+ = 441$ (4), 178 (100), 45 (78), 136 (69), 252 (67), 149 (67), 135 (61), 208 (45), 87 (43), 179 (37), 250 (35)
IVc	$M^+ = 485$ (4), 45 (100), 178 (71), 87 (51), 136 (38), 149 (36), 193 (33), 192 (27), 135 (27), 208 (24), 148 (24)
IVd	$M^+ = 529$ (6), 178 (100), 136 (64), 252 (55), 208 (45), 149 (45), 45 (41), 135 (30), 250 (27), 179 (25), 87 (25)
IVe	$M^+ = 579$ (1), 45 (100), 178 (60), 87 (53), 136 (51), 149 (36), 89 (35), 135 (31), 208 (29), 252 (25), 250 (15)
Va	$M^+ = 397$ (2), 45 (100), 178 (72), 87 (48), 149 (46), 136 (39), 135 (38), 208 (30), 193 (26), 148 (26), 192 (22)
Vb	$M^+ = 441$ (4), 45 (100), 178 (94), 87 (65), 135 (58), 136 (56), 149 (46), 252 (42), 208 (31), 89 (27), 250 (21)
Vc	$M^+ = 485$ (1), 45 (100), 87 (80), 178 (48), 149 (36), 89 (36), 135 (32), 136 (30), 252 (26), 179 (24), 148 (22)
Vd	$M^+ = 529$ (4), 178 (100), 45 (65), 87 (47), 193 (42), 192 (37), 149 (33), 208 (27), 179 (26), 252 (24), 89 (24)
Ve	$M^+ = 575 (0.5), 45 (100), 87 (62), 89 (53), 59 (38), 135 (33), 57 (31), 178 (29), 58 (24), 136 (22)$
VIa	$M^+ - H_2O = 348$ (3), 178 (100), 135 (66), 148 (60), 100 (57), 56 (51), 44 (51), 149 (43), 136 (37), 108 (31), 214 (29)
VIb	$M^{+} + 1 = 411 (0.5), 56 (100), 232 (76), 178 (76), 178 (76), 57 (65), 100 (50), 233 (47), 149 (45), 70 (37), 58 (34), 258 (31)$

Collection Czechoslovak Chem. Commun. [Vol. 52] [1987]

2974

TABLE II

TABLE	Π
-------	---

(Continued)

Compound ^a	m/z (r.i.)
VIc	$M^{+} + 1 = 455 (0.4), 276 (100), 178 (37), 277 (22), 56 (12), 302 (11), 45 (11), 179 (10), 100 (10), 124 (9), 136 (8)$
VIIa	$M^{+} + 1 = 367$ (1), 178 (100), 214 (89), 56 (55), 45 (35), 149 (32), 189 (28), 135 (27), 100 (27), 126 (14), 108 (12)
VIIb	$M^+ + 1 = 411$ (1), 232 (100), 178 (64), 258 (38), 149 (29), 135 (22), 45 (22), 56 (21), 233 (17), 262 (14), 100 (13)
VIIc	$M^+ + 1 = 455$ (1), 276 (100), 179 (83), 302 (43), 277 (21), 56 (21), 45 (20), 149 (16), 100 (13), 135 (12), 124 (9)
VIIIa	$M^+ - H_2O = 348 \ (0.6), \ 56 \ (100), \ 57 \ (94), \ 100 \ (93), \ 188 \ (88), \ 83 \ (85), \ 144 \ (56), \ 55 \ (53), \ 158 \ (40), \ 58 \ (35)$
VIIIc	188 (100), 178 (43), 214 (24), 100 (19), 56 (15), 189 (14), 45 (11), 158 (9), 135 (9), 149 (8)

^a Compounds IVa, IVc-IVe, Va-Ve, VIIa-VIIc, VIIIa, and VIIIc were measured in form of chromatographically enriched isomer mixtures.

RESULTS AND DISCUSSION

Reaction of the macrocyclic epoxides Ia-Ie as well as IIa-IIc with adenine was carried out in dimethylformamide under catalytic action of anhydrous potassium carbonate. A nearly quantitative conversion of the educts into products occured at elevated temperature.

R

Three isomeric products were invariably found in the reaction mixture and these were assigned (vide infra) structures of adenin-9-yl, adenin-3-yl, and adenin-7-yl derivatives shown above. It was found that the former positional isomer prevails always in the reaction over the latter two in ratio approximately 6:1, irrespective of structure and ring size of the starting crown. Thus formation of the individual isomers appears to depend primarily upon electron density on the alternative reaction sites in the adenine nucleophile. Qualitatively similar prevalence of adenin-9-yl isomers was observed earlier in reaction of adenine with other glycidylethers⁹, where however formation of the minor adenin-7-yl isomers was not noted.

Only incomplete separation of the positional isomers could be attained by liquid chromatography on preparative as well as on analytical scale owing to small differences in retention times following always the order III < IV < V and VI < VII < VIII. Pure adenin-9-yl isomers IIa-IIe and VIa-VIc were isolated by a column chromatography on alumina in 40-65% yields, the remaining portion being co-eluted with the slower components. The complementary adenin-3-yl and adenin-7-yl isomers were accordingly obtained merely in form of enriched chromatographic fractions; these however sufficed for an structure assignment by NMR spectroscopy.

Assignment of Structure of the Adenine Derivatives III – VIII by ¹H and ¹³C NMR Spectroscopy.

A common feature of ¹H NMR spectra of all the adenine derivatives investigated in this study is presence of three signals in the aromatic region, a broad signal corresponding to protons in the macroring (CH₂--O δ 3·4-3·5; CH₂--N δ 2·7), and signals due to the aliphatic junction between the adenine and crown moieties (CH₂--OH δ 3·95; CH₂--N δ 4·05 and 4·25; CH₂--O δ 3·4-3·5). It indicates that structure of all the obtained products is in accord with the proposed formulae.

A closer examination of the proton signals in the aromatic regions shows (Table III) that chemical shifts for the individual positional isomers in any investigated triad III - V or VI - VIII differ each from the other markedly. Tentative assignment of structure for the individual isomers could be made on basis of the observed differences, since available evidence from other substituted adenines¹⁰⁻¹⁴ strongly

TABLE III

suggests (Table VI) that a simple relationship exists between magnitude of chemical shift of adenine protons and the substituent position.

Independent structure assignment could be drawn on basis of ${}^{13}C$ NMR spectroscopy, the chemical shifts for adenine grouping being in the individual position isomers again distinctly different (Tables IV and V). A correlation of the observed values with available literature analogies (Table VI) confirmed in full the structure assignment based on ¹H NMR.

The Effect of Pendant Group and Ring Size on Complexation of Adenin-9-yl Isomers III and VI with Sodium Ion

As a part of our interest in complexation of alkali metal salts with macrocyclic ligands^{15,16} we have performed a customary study of complexing ability of the

 Compound ^a	H-2	H-8	NH ₂	
IIIa	8·04 s	8·13 s	7·17 s	
IVa	8·22 s	7·78 s	7·93 s	
Va	8·18 s	8·15 s	6·85 s	
IIIb	8∙04 s	8·13 s	7·17 s	
IVb	8∙24 s	7∙82 s	8·01 s	
IIIc	8∙04 s	8·12 s	7·17 s	
Vc	8·17 s	8-16 s	6·87 s	
IIId	8∙04 s	8·13 s	7·17 s	
IVd	8-28 s	7∙76 s	7⋅87 s	
Vd	8·18 s	8·15 s	6·87 s	
IIIe	8·04 s	8·13 s	7·19 s	
IVe	8-21 s	7∙78 s	7·91 s	
Ve	8-18 s	8·15 s	6·85 s	
VIa	8∙07 s	8·13 s	7·17 s	
VIIa	8·24 s	7·78 s	7·94 s	
VIIIa	8·18 s	8·17 s	6·90 s	
VIb	8∙06 s	8·13 s	7·18 s	
VIIb	8·24 s	7•77 s	7•93 s	
VIc	8·07 s	8·14 s	7·21 s	
VIIc	8·23 s	7∙76 s	7·90 s	
VIIIc	8·16 s	8·16 s	6•84 s	

¹H NMR chemical shifts of compounds III – VIII in hexadeuteriodimethyl sulphoxide

^a Compounds IVa, IVb, IVd, IVe, Va, Vc, Vd, Ve, VIIa, VIIb, VIIc, VIIIa, and VIIIc were measured in form of chromatographically enriched isomer mixtures.

Carbon	IIIa	IVa	Va	qIII	٩ЛI	IIIc	PIII	IIIe	IVe	Ve
C-2	152·45 d	150-91 d	152·20 d	152·51 d	151·39 d	152-44 d	152-67 d	152·42 d	151·74 d	152·77 d
0 4	149-92 s	149-60 s	159-79 s	149-92 s	149-73 s	149-90 s	150-09 s	149-96 s	149-83 s	159-81 s
C-5	118·81 s	118·64 s	112·10 s	118·79 s	119-28 s	118·78 s	118-91 s	118·82 s	119-71 s	112·34 s
ů. Č	156-08 s	154·97 s	152·20 s	156·12 s	154-97 s	156-07 s	156·15 s	156·02 s	155•14 s	152-47 s
С-8 С-8	141-91 d	145·34 d	146·87 d	141·88 d	145-34 d	141-84 d	142-43 d	142·09 d	144·86 d	147·18 d
C-1′	46·70 t	53-11 t	4 9-57 t	46·66 t	53-09 t	46.68 t	46-97 t	46·79 t	53-12 t	49-83 t
C-2′	67-81 d	66·72 d	66·73 d	67-81 d	66·74 d	67·81 d	68·16 d	67-94 d	66·78 d	67-07 d
C-3′	73-35 t	73-43 t	72·50 t	73·34 t	73-44 t	73·33 t	73-51 t	73-38 t	73-44 t	72·54 t
0 4	69-57 t	69-51 t	69-01 t	69-45 t	69-35 t	69-13 t	69-50 t	69-36 t	69-29 t	69-47 t
C-5′ª	77-96 d	77·86 d	77·87 d	78-00 d	P 06-11	P 6 <i>L∙LL</i>	78-19 d	78-07 d	P 96-11	78-11 d
^a Remaining 70-11 t, 69-85 69-92 t (2 C); 70-06 t (2 C), (3 C); in <i>IVe</i>	crown carbon: t; in <i>Va</i> 71·30 in <i>IVb</i> 71·24 t 70·02 t (2 C); 71·11 t, 70·58 t	s: in <i>IIIa</i> 71.5 it, 71-00 t, 70 ; 70-81 t, 70-5 in <i>IIId</i> 71-34 i, 70-50 t, 70-5	23 t, 71·16 t, -49 t, 70·23 t 34 t, 70·13 t, t, 71·27 t, 7(23 t (9 C), 70	70-53 t, 70-3 , 70-13 t, 69- 69-93 t (2 C) 9-90 t, 70-80 i 9-18 t (3 C); ii	2 t, 70-27 t, 86 t, 69-49 t; 69-87 t, 69- t, 70-50 t (8 (n <i>Ve</i> 71-27 t,	70-19 t, 69-9 in <i>111</i> b 71-35 81 t (2 C); in C), 70-41 t; in 71-10 t, 70-7	1 (; in <i>IVa</i> 71 2 (; 70-88 (; 7(1 <i>IIIc</i> 71-10 (; 1 <i>IIIc</i> 71-17 (; 70-72 (; 7	-21 t, 71-08 t 0-44 t, 70-24 t 71-00 t, 70-3 70-65 t, 70-: 70-42 t (8 C),	, 70-46 t, 70- , 70-07 t, 69- 4 t, 70-30 t, 7 58 t, 70-31 t (70-22 t (3 C)	24 t, 70-19 t, 99 t, 69-96 t, 00-13 t (3 C), 9 C), 70-26 t

2978

Carbon	VIa	VIIa	VIIIa	AI V	qII1	VIC	VIIc	VIIIc
C-2	152-42 d	151-99 d	152·10 d	152·38 d	152·02 d	152·48 d	152·14 d	152·08 d
C-4	149-89 s	149-96 s	159-78 s	149-90 s	150-01 s	149-98 s	150-01 s	<i>a</i>
C-S	118·74 s	120·12 s	111-93 s	118·76 s	120·17 s	118·82 s	120-30 s	111-81 s
C-6	156·08 s	155·15 s	152·10 s	156-07 s	155·18 s	156·13 s	155-19 s	152-08 s
C-8	141·78 d	144·57 d	146·75 d	141·86 d	144·69 d	142·00 d	144·53 d	146-71 d
Ċ-I,	47·37 t	53-93 t	50-54 t	47·57 t	54·16 t	47·73 t	53-95 t	50-68 t
C-2⁄	67-41 d	66·45 d	68•74 d	67-51 d	66·80 d	67·73 d	66-54 d	68·99 d
C-3′	59-63 t	59-54 t	58-83 t	60·14 t	60·20 t	59-47 t	59-61 t	58-94 t
C-5′ ^b	55-43 t	55·32 t	55-19 t	55-49 t	55·57 t	55-03 t	55-33 t	55-23 t

Chemistry of Multidentate Ligands

adenin-9-yl substituted crowns and azacrowns IIIa - IIIe and VIa - VIc in respect to sodium cation. Stability constants K_s corresponding to 1 : 1 metal-ligand complex formation were determined potentiometrically in 99% methanol employing sodium ion selective electrode. In order to assess the effect of the adenine group upon complexation, we have included in the potentiometric study several related series of macrocyclic ligands differing in pendant group. The adenin-9-yl derivatives IIIa - IIIewere compared with the hydroxymethyl¹⁷ derivatives IXa - IXe, benzyloxymethyl¹⁷ derivatives Xa - Xe, and 4,5-epoxy-2-oxapentyl¹⁷ derivatives Ia - Ie. The adenin-

TABLE VI

Characteristic values of ¹H and ¹³C NMR chemical shifts of substituted adenines in hexadeuteriodimethyl sulphoxide

	Chemical shi	fts for substitution	n in position	
Atom -	3 ^{<i>a</i>,<i>b</i>}	7 ^{c,d}	9 ^d ,e	
H-2	8·32 s	8∙55 s	8·04 s	
H-8	7·76 s	8·21 s	8·14 s	
NH ₂	f	6-99 bs	7.18 bs	
C-2	147·8 d	153·8 d	153·9 d	
C-4	147·5 s	161·3 s	148·8 s	
C-5	110·3 s	111·4 s	121·0 s	
C-6	153·2 s	152·8 s	157·1 s	
C-8	144·4 d	145·4 d	141·3 d	

^a Data from ref.¹⁰; ^b data from ref.¹¹; ^c data from ref.¹²; ^d data from ref.¹³; ^e data from ref.¹⁴; ^f value was not reported.

Collection Czechoslovak Chem. Commun. [Vol. 52] [1987]

2980

-9-yl derivatives VIa - VIc were similarly compared with the corresponding methyl derivatives XIa - XIc and with the 2-hydroxypropyl derivatives XIIa - XIIc. The results are summarized in Tables VII and VIII.

As inspection of Tables VII and VIII shows, ring size is the dominant factors which controls complex stability in all the investigated series, irrespective of pendant group. The observed order of complex stability $12 < 15 < 18 > 21 \sim 24$ is in accord with the principle of best fit between macroring cavity and metal ion diameter which is known to govern complexation behaviour of unsubstituted crown^{18,19}.

A closer examination of Tables VII and VIII show that only subtle differences exist among the compared pendant groups. It suggests that adenin-9-yl group does not contribute significantly to complexation of sodium ion with the ligands *IIIa-IIIe*

TABLE VII

Stabilities of 1:1 complexes between sodium ion and functionalized crown ethers III, I, IX, and X determined in 99% methanol: the effect of ring size and pendant group on stability constant (K_s)

Homologue		K _s , 1	mol ⁻¹		
(ring size)	111	1	IX	X	
a (12)	36	13	37	4	
b (15)	664	1 100	890	1 120	
c (18)	6 490	7 590	4 560	6 610	
d (21)	75	78	144	65	
e (24)	133	141	159	151	

^a Not determined.

TABLE VIII

Stabilities of 1:1 complexes between sodium ion and functionalized azacrown ethers VI, XI, and XII in 99% methanol: the effect of ring size and pendant group on stability constant (K_s)

Homologue		$K_{\rm s}$, 1 mol ⁻²	1
 (ring size)	VI	XI	XII
<i>a</i> (12)	170	110	330
b (15)	1 350	2 570	4 470
c (18)	15 600	6 100	20 420

Holý P., Bělohradský, Stibor, Koudelka, Šaman, Hodačová, Holý A., Závada

and VIa - VIc regardless of the macroring size. This does not come much as a surprise since adenine is known to provide a soft^{20,21} ligation site which is not convenient for hard sodium cation; a more pronounced effect of the adenine group may be expected in complexation with softer, *e.g.*, transition metal ions.

REFERENCES

- 1. Bělohradský M., Holý P., Stibor I., Závada J.: Collect. Czech. Chem. Commun. 52, 2961 (1987).
- 2. DeClercq E., Descamps J., DeSomer P., Holý A.: Science 200, 563 (1978).
- 3. DeClercq E., Holý A.: J. Med. Chem. 28, 282 (1985).
- 4. DeClercq E., Holý A., Rosenberg I., Sakuma T., Balzarini J., Maudgal P. C.: Nature 323, 464 (1986).
- 5. DeClercq E.: Antimicrob. Agents Chemother. 28, 84 (1985).
- 6. Robins R. K.: Chem. Eng. News 64, 28 (1986).
- 7. Daly J. W.: J. Med. Chem. 25, 197 (1982).
- 8. Trezl L., Bako P., Fenichel L., Rusznak I.: J. Chromatogr. 269, 40 (1983).
- 9. Ueda N., Kawabata T., Takemoto K.: J. Heterocycl. Chem. 8, 827 (1971).
- 10. Miyaki M., Shimizu B.: Chem. Pharm. Bull. 18, 1446 (1970).
- 11. Seela F., Hasselmann D.: Chem. Ber. 113, 2043 (1980).
- 12. Montgomery J. A., Thomas H. J.: J. Am. Chem. Soc. 87, 5442 (1965).
- 13. Akhrem A. A., Mikhailopulo I. A., Abramov A. F.: Org. Magn. Reson. 12, (1979).
- 14. Holý A.: Collect. Czech. Chem. Commun. 48, 1910 (1983).
- 15. Závada J., Pechanec V., Kocián O.: Collect. Czech. Chem. Commun. 48, 2509 (1983).
- Závada J., Pechanec V., Zajíček J., Stibor I., Vítek A.: Collect. Czech. Chem. Commun. 50, 1184 (1985).
- 17. Bělohradský M., Stibor I., Holý P., Závada J.: Collect. Czech. Chem. Commun. 52, 2500 (1987).
- 18. Pedersen C. J.: J. Am. Chem. Soc. 89, 7017 (1967).
- Izatt R. M., Bradshaw J. S., Nielsen S. A., Lamb J. D., Christensen J. J.: Chem. Rev. 85, 271 (1985).
- 20. Martin R. B.: Acc. Chem. Res. 18, 32 (1985).
- 21. Tu A. T., Heller M. J. in the book: Metal Ions in Biological Systems (H. Siegel, Ed.), Vol. 1, Chapt. 1. Dekker, New York 1974.

Translated by the author (J.Z.).

2982